Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Heavy-duty vehicles (HDVs) disproportionately contribute to the creation of air pollutants and emission of greenhouse gases—with marginalized populations unequally burdened by the impacts of each. Shifting to non-emitting technologies, such as electric HDVs (eHDVs), is underway; however, the associated air quality and health implications have not been resolved at equity-relevant scales. Here we use a neighbourhood-scale (~1 km) air quality model to evaluate air pollution, public health and equity implications of a 30% transition of predominantly diesel HDVs to eHDVs over the region surrounding North America’s largest freight hub, Chicago, IL. We find decreases in nitrogen dioxide (NO2) and fine particulate matter (PM2.5) concentrations but ozone (O3) increases, particularly in urban settings. Over our simulation domain NO2and PM2.5reductions translate to ~590 (95% confidence interval (CI) 150–900) and ~70 (95% CI 20–110) avoided premature deaths per year, respectively, while O3increases add ~50 (95% CI 30–110) deaths per year. The largest pollutant and health benefits simulated are within communities with higher proportions of Black and Hispanic/Latino residents, highlighting the potential for eHDVs to reduce disproportionate and unjust air pollution and associated air-pollution attributable health burdens within historically marginalized populations.more » « less
-
Abstract Electric vehicles (EVs) constitute just a fraction of the current U.S. transportation fleet; however, EV market share is surging. EV adoption reduces on-road transportation greenhouse gas emissions by decoupling transportation services from petroleum, but impacts on air quality and public health depend on the nature and location of vehicle usage and electricity generation. Here, we use a regulatory-grade chemical transport model and a vehicle-to-electricity generation unit electricity assignment algorithm to characterize neighborhood-scale (∼1 km) air quality and public health benefits and tradeoffs associated with a multi-modal EV transition. We focus on a Chicago-centric regional domain wherein 30% of the on-road transportation fleet is instantaneously electrified and changes in on-road, refueling, and power plant emissions are considered. We find decreases in annual population-weighted domain mean NO2(−11.83%) and PM2.5(−2.46%) with concentration reductions of up to −5.1 ppb and −0.98µg m−3in urban cores. Conversely, annual population-weighted domain mean maximum daily 8 h average ozone (MDA8O3) concentrations increase +0.64%, with notable intra-urban changes of up to +2.3 ppb. Despite mixed pollutant concentration outcomes, we find overall positive public health outcomes, largely driven by NO2concentration reductions that result in outsized mortality rate reductions for people of color, particularly for the Black populations within our domain.more » « less
-
Wildfires and meteorological conditions influence the co-occurrence of multiple harmful air pollutants including fine particulate matter (PM 2.5 ) and ground-level ozone. We examine the spatiotemporal characteristics of PM 2.5 /ozone co-occurrences and associated population exposure in the western United States (US). The frequency, spatial extent, and temporal persistence of extreme PM 2.5 /ozone co-occurrences have increased significantly between 2001 and 2020, increasing annual population exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a clustering methodology to characterize daily weather patterns, we identify significant increases in atmospheric ridging patterns conducive to widespread PM 2.5 /ozone co-occurrences and population exposure. We further link the spatial extent of co-occurrence to the extent of extreme heat and wildfires. Our results suggest an increasing potential for co-occurring air pollution episodes in the western US with continued climate change.more » « less
-
Abstract The southern Lake Michigan region of the United States, home to Chicago, Milwaukee, and other densely populated Midwestern cities, frequently experiences high pollutant episodes with unevenly distributed exposure and health burdens. Using the two‐way coupled Weather Research Forecast and Community Multiscale Air Quality Model (WRF‐CMAQ), we investigate criteria pollutants over a southern Lake Michigan domain using 1.3 and 4 km resolution hindcast simulations. We assess WRF‐CMAQ's performance using data from the National Climatic Data Center and Environmental Protection Agency Air Quality System. Our 1.3 km simulation slightly improves on the 4 km simulation's meteorological and chemical performance while also resolving key details in areas of high exposure and impact, that is, urban environments. At 1.3 km, we find that most air quality‐relevant meteorological components of WRF‐CMAQ perform at or above community benchmarks. WRF‐CMAQ's chemical performance also largely meets community standards, with substantial nuance depending on the performance metric and component assessed. For example, hourly simulated NO2and O3are highly correlated with observations (r > 0.6) while PM2.5is less so (r = 0.4). Similarly, hourly simulated NO2and PM2.5have low biases (<10%), whereas O3biases are larger (>30%). Simulated spatial pollutant patterns show distinct urban‐rural footprints, with urban NO2and PM2.520%–60% higher than rural, and urban O36% lower. We use our 1.3 km simulations to resolve high‐pollution areas within individual urban neighborhoods and characterize seasonal changes in O3regimes across tight spatial gradients. Our findings demonstrate both the benefits and limitations of high‐resolution simulations, particularly over urban settings.more » « less
-
Abstract High‐impact poor air quality events, such as Beijing's so‐called “Airpocalypse” in January 2013, demonstrate that short‐lived poor air quality events can have significant effects on health and economic vitality. Poor air quality events result from the combination of the emission of pollutants and meteorological conditions favorable to their accumulation, which include limited scavenging, dispersion, and ventilation. The unprecedented nature of events such as the 2013 Airpocalypse, in conjunction with our nonstationary climate, motivate an assessment of whether climate change has altered the meteorological conditions conducive to poor winter air quality in Beijing. Using three indices designed to quantify the meteorological conditions that support poor air quality and drawing on the attribution methods of Diffenbaugh et al. (2017,https://doi.org/10.1073/pnas.1618082114), we assess (i) the contribution of observed trends to the magnitude of events, (ii) the contribution of observed trends to the probability of events, (iii) the return interval of events in the observational record, preindustrial model‐simulated climate and historical model‐simulated climate, (iv) the probability of the observed trend in the preindustrial and historical model‐simulated climates, and (v) the relative influences of anthropogenic forcing and natural variability on the observed trend. We find that anthropogenic influence has had a small effect on the probability of the January 2013 event in all three indices but has increased the probability of a long‐term positive trend in two out of three indices. This work provides a framework for both further understanding the role of climate change in air quality and expanding the scope of event attribution.more » « less
An official website of the United States government
